Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis

Identifieur interne : 001269 ( Main/Exploration ); précédent : 001268; suivant : 001270

Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis

Auteurs : Silke Schmidt [États-Unis] ; Michael A. Schmidt [États-Unis] ; Xuejun Qin [États-Unis] ; Eden R. Martin [États-Unis] ; Elizabeth R. Hauser [États-Unis]

Source :

RBID : ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A

English descriptors

Abstract

The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/gepi.20152


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
</author>
<author>
<name sortKey="Schmidt, Michael A" sort="Schmidt, Michael A" uniqKey="Schmidt M" first="Michael A." last="Schmidt">Michael A. Schmidt</name>
</author>
<author>
<name sortKey="Qin, Xuejun" sort="Qin, Xuejun" uniqKey="Qin X" first="Xuejun" last="Qin">Xuejun Qin</name>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/gepi.20152</idno>
<idno type="url">https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002D52</idno>
<idno type="wicri:Area/Main/Curation">002974</idno>
<idno type="wicri:Area/Main/Exploration">001269</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Center for Human Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Michael A" sort="Schmidt, Michael A" uniqKey="Schmidt M" first="Michael A." last="Schmidt">Michael A. Schmidt</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Center for Human Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Qin, Xuejun" sort="Qin, Xuejun" uniqKey="Qin X" first="Xuejun" last="Qin">Xuejun Qin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Center for Human Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Center for Human Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Center for Human Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Genetic Epidemiology</title>
<title level="j" type="sub">The Official Publication of the International Genetic Epidemiology Society</title>
<title level="j" type="abbrev">Genet. Epidemiol.</title>
<idno type="ISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-07">2006-07</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="409">409</biblScope>
<biblScope unit="page" to="422">422</biblScope>
</imprint>
<idno type="ISSN">0741-0395</idno>
</series>
<idno type="istex">3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</idno>
<idno type="DOI">10.1002/gepi.20152</idno>
<idno type="ArticleID">GEPI20152</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0741-0395</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>complex human disease</term>
<term>genetic heterogeneity</term>
<term>simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
</region>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<name sortKey="Qin, Xuejun" sort="Qin, Xuejun" uniqKey="Qin X" first="Xuejun" last="Qin">Xuejun Qin</name>
<name sortKey="Schmidt, Michael A" sort="Schmidt, Michael A" uniqKey="Schmidt M" first="Michael A." last="Schmidt">Michael A. Schmidt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001269 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001269 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A
   |texte=   Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024